A thermochemical study of ceria: exploiting an old material for new modes of energy conversion and CO2 mitigation.

نویسندگان

  • William C Chueh
  • Sossina M Haile
چکیده

We present a comprehensive thermodynamic and kinetic analysis of the suitability of cerium oxide (ceria) for thermochemical fuel production. Both portions of the two-step cycle, (i) oxygen release from the oxide at 1773 and 1873 K under inert atmosphere, and (ii) hydrogen release upon hydrolysis at 1073 K, are examined theoretically as well as experimentally. We observe gravimetric fuel productivity that is in quantitative agreement with equilibrium, thermogravimetric studies of ceria. Despite the non-stoichiometric nature of the redox cycle, in which only a portion of the cerium atoms change their oxidation state, the fuel productivity of 8.5-11.8 ml of H(2) per gram of ceria is competitive with that of other solid-state thermochemical cycles currently under investigation. The fuel production rate, which is also highly attractive, at a rate of 4.6-6.2 ml of H(2) per minute per gram of ceria, is found to be limited by a surface-reaction step rather than by ambipolar bulk diffusion of oxygen through the solid ceria. An evaluation of the thermodynamic efficiency of the ceria-based thermochemical cycle suggests that, even in the absence of heat recovery, solar-to-fuel conversion efficiencies of 16 to 19 per cent can be achieved, assuming a suitable method for obtaining an inert atmosphere for the oxygen release step.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

mitigation 2 CO material for new modes of energy conversion and A thermochemical study of ceria : exploiting an old

(22 articles) energy (149 articles) materials science collections Articles on similar topics can be found in the following Email alerting service here in the box at the top right-hand corner of the article or click Receive free email alerts when new articles cite this article-sign up We present a comprehensive thermodynamic and kinetic analysis of the suitability of cerium oxide (ceria) for the...

متن کامل

Perovskite oxides – a review on a versatile material class for solar-to-fuel conversion processes

Thermochemical water and carbon dioxide splitting with concentrated solar energy is a technology for converting renewable solar energy into liquid hydrocarbon fuels as an alternative to fossil fuels, which are dominating in today's energy mix. For the conversion reaction to be efficient, special redox materials are necessary to perform the necessary chemical reactions in a thermochemical cycle....

متن کامل

Solar-Driven Thermochemical Splitting of CO2 and In Situ Separation of CO and O2 across a Ceria Redox Membrane Reactor

Splitting CO2 with a thermochemical redox cycle utilizes the entire solar spectrum and provides a favorable path to the synthesis of solar fuels at high rates and efficiencies. However, the temperature/pressure swing commonly applied between reduction and oxidation steps incurs irreversible energy losses and severe material stresses. Here, we experimentally demonstrate for the first time the si...

متن کامل

Effective Heat and Mass Transport Properties of Anisotropic Porous Ceria for Solar Thermochemical Fuel Generation

High-resolution X-ray computed tomography is employed to obtain the exact 3D geometrical configuration of porous anisotropic ceria applied in solar-driven thermochemical cycles for splitting H2O and CO2. The tomography data are, in turn, used in direct pore-level numerical simulations for determining the morphological and effective heat/mass transport properties of porous ceria, namely: porosit...

متن کامل

Thermochemical CO2 splitting via redox cycling of ceria reticulated foam structures with dual-scale porosities.

Efficient heat transfer of concentrated solar energy and rapid chemical kinetics are desired characteristics of solar thermochemical redox cycles for splitting CO2. We have fabricated reticulated porous ceramic (foam-type) structures made of ceria with dual-scale porosity in the millimeter and micrometer ranges. The larger void size range, with dmean = 2.5 mm and porosity = 0.76-0.82, enables v...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Philosophical transactions. Series A, Mathematical, physical, and engineering sciences

دوره 368 1923  شماره 

صفحات  -

تاریخ انتشار 2010